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ROBUST TEST OF LINEAR HYPOTHESIS FOR THE LINEAR
MODEL•

by Ann Inez N. Gironella"
and George A. Milliken **

INTRODUCTION

Consider the general linear model

y =X{3+€ (1.1)

• where y is an n x I vector of observations, X is an n x p matrix of
known fixed quantities of rank p(p <; n), {3 is a p x I vector of un..
known parameters, and e is an n x I vector of random errors.

It is desired to test the hypothesis

(1.2)

•

•

where H is a d x p matrix of full row rank (d <; p) and h is a known
d x I vector. The unconstrained model (1.1) is called the full model
and the model subject to the constraint (1.2) is called the reduced
model.

If the errors. €;, are assumed to be LLdN(O, 0 2), the least squares
estimate of {3, {3LS' is obtained by minimizing the sum of squares

n
SS = .~ (yj - x/(3)2 where x~ is the ith row of X. The solution is

1= 1

{3LS = (X'X)-l X'y and the classical F-statistic used to test Ho is
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F= [SSR (Reduced) - SSR (Full))/d

02

[

(H~LS - h)' [H(x'X)-1 H')-1 (H~LS-h)J= n-p
d y'[I - X(x'X)-1 x'lY

•

where SSR (Reduced) is the residual sum of squares in the reduced
model and SSR (Full) is the residual sum of squares in the full model. •

If the errors are nonnormal or if the distribution of the e'js is
long-tailed, the least squares procedure yields poor estimates of {j,
particularly in the single location case (Andrews, et. al., 1972).
Huber (1973) proposed a robust method for "deflating the influence
of gross errors of any kind" by minimizing some expression which is
less sensitive to extreme values of the residuals. He defmed an M-es
timate of{j as one that minimizes the dispersion of residuals.

DM =1;n p (y. - x~{j)
j= 1 I I

or, equivalently, as the solution to the system of equations

~ 1/1 (yj - x;J3)x jj = O,j = 1,2, ... ,p
i =1

(1.3)

(1.4)

•

where 1/1 (t) is the first derivative of p(t) with respect to t, and p is a
convex function.

Hettmansperger and McKean (1977) have developed a robust
alternative to least squares for testing hypotheses about the para
meter {j. Their approach is based on the ranks of the residuals. They
defmed a statistic FR and showed that, when properly normalized, •
its sampling distribution is asympotic X2 . Schrader (1976) also
developed a robust alternative to least squares based on Huber's
M-estimates. He defmed a statistic FM and showed that this statistic,
properly normalized, has asymptotic X2 - distribution. Schrader and
McKean (1977) showed that these two robust test statistics can be
applied to most analysis of variance problems.

In this paper, a test of linear hypothesis based on the asymptotic
normality of Huber's M-estimates will be considered. The statistics

•
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proposed by Schrader (1976) requires lengthly iterative computa
tional procedures. A simpler method is proposed that would con
siderably reduce calculations. The procedure basically applies
weighted least squares techniques to Huber's M-estimates.

BACKGROUND THEOREMS

• Theorem 1. Under the regularity conditions given by Huber (1973),

where PM is the Huber M-estimate of (3 and K( 1/1 , F) = E( 1/12)/ E( 1/1')2.

D
The symbol" denotes convergence in distribution.

Proof: Huber (1973).

Theorem 2. Let DM (Full) = minimum value of 'E~ p (yj - x/~(3)
1= 1

under the full model (1.1), and let DM (Red) =minimum value of

'E~ p (yj - x'(3) under the model subject to constraint (1.2), then
I

2E(I/I') [D (Red) - D (Full)] ~ x 2 (d)
E(1/I2) M M

• where X2 (d) is a central X2
- random variable with d degrees of free

dom.

Proof: Schrader (1976).

ONE-STEPPROCEDURES FOR ESTIMATING{3
Huber's class of M-estimates, defmed as the solution to the

system of equations (1.4), can be calculated only iteratively. Bickel
(1975) proposed one-step procedures for estimating f3 in the general
linear model using Huber's p-function
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ItI ~ c

/tl > c
(3.1)

..
with c = ko for scale invariance and k is some positive constant.
Computationally, one-step estimates are obtained as follows: •

let s+ =G(Yj - x:~*) > k~ ,S- =~ (Yj- X;~*)< -k~~

SO = W IYj - x;p*/ ~ k~]where ~* is an initial shift invariant esti
mate of~,

med IYj - x:~*l
0=

4>-1 (1-)
4

a robust estimate of 0, and 4>-1 is the inverse of the standard normal
cdf. Replace any residual

Yj - ~:= 1 Xji~i

by~ if «s: and by -~ if ieS- . If t ¢ So, replace x ji by 0 for j = I, 2,
... ,p. If the resulting vector of modified residuals is denoted by R *
and the resulting matrix of modified x j i by X*, then the one step
estimator of ~ is

~M =~* + (X*'X*)-1 X'R*

One-step procedures can readily be applied in the single location
case, the p-sample case, regression through the origin, and most simple
analysis of variance situations where a robust estimate of ~, usually
the median, can be used as an initial estimate of~.

In more complicated situations, robust initial estimates of ~ are
not readily available and one may have to use a least squares esti
mator of (3 as starting point - a poor estimate of (3 in problems

•

•
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that are dealt with robust procedures. Andrews (1974) has proposed
an iterative procedure for estimating (3 when one-step procedures are
felt inadequate.

GENERAL PROCEDURE

Theorem 2 makes it possible to test hypothesis about the para-
• meter of the general linear model with Huber's M-estimates in a

manner very much like that of least squares theory. Schrader (1976)
defmed an F-like, FM , statistics as

where

_1_ 1;n 2 e
AM = n-p ;=1 I/J (j)

2_1 1;n I/J' (e.)
n i» 1 I

..

is a consistent estimator of AM = E( 1/J2 )/2E( I/J'). His asymptotic
theory shows that FM can be compared with the F-distribution With
d and (n-p) degrees of freedom. This test statistic requires calculating
the dispersion '

for both the full and the reduced models.
For example, in the analysis of covariance model with n observa

tions per cell, the response is described as

Yq =ex; + {3jXjj + €jj; i= i =1,2, ... , t; j =1, 2, ... , n

where the €jj are independent with distribution function F assumed
to be symmetric about O. Suppose it is of interest to test the hypo-

..
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thesis, Ho : ~l =~2 =... =~t =~, ~ unspecified. Under the full model,
2t parameters have to be estimated from whence DM (Full) is ob
tained. Then the model is restricted by the conditions of the null
hypothesis to yield

Y;j =ex; +~X;j + €;j; i= 1,2, ... , t;,j= 1,2, ... , n.

Under this reduced model, (t + 1) parameters have to be estimated to •
obtain DM (Red).

A method for testing Ho : H ~ =h(H of rank d ~ p) is proposed
using the asymptotic normality of Huber's M-estimates.

Define the ~M -vmodel as

A

13M =I {3 +€* (4.1)

where €* is asymptotically distributed as aMNV (0, K[ I/J, F] (X'X)-l)
and •

E1/I2 (€;)
K(1/I, F) = [Ex' (€;)]2 ,€; =Yi - x'~.

Note that K( 1/1, F) parallels 02 in the usual least squares procedure. A
natural estimate 01 A~I/I, 1<), suggested by Huber (1973), is

K(1/I,F) = (4.2)

•
From the ~M - model, test of linear hypothesis about ~. can be

carried out. The general approach is to constrain the model (4.1)
subject to Ho ' This yields.

(4.3)

where H- denotes the Moore-Penrose generalized inverse. Weighted

•
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•

least squares techniques can be applied to the constrained model
(4.3) to obtain the sum of squares due to testing Ho , denoted by
SSHo i.e.,

where
B =X'X - X'X (I - H-H) [(I - H-H) X'X (l - H-H)}- (I - H-H) X'X

An alternative form of SSHo is given as

A

• since H 13M - h is asymptotically distributed as a

MVN[(H ~M - h), K(1/J, FIl(x'X)-lH'j.

Now, since SSHo is a quadratic form in 13M, 13M is asymptotically
multi-variate normal with mean 13 and covariance matrix

V =K (1/J, F) (XX)-l, and K(: F) B V is-idempotent of rank d,
then '

•
SSHo

K(1/J, F)

This result can be ..summarized it) the following theorem.
theorem. In the 13M - model, 13M = I 13 + e* is asymptotically

MVN (0, K(1/J, F) (X'X)-l),

•
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~ -, ~ -

where SSHo = (13M - H h) B(I3M - H h) is the sum of squares for
testing the hypothesis Ho : H P= h vs. Ha: H P=1= h.

Corollary. Under Ho : H P= h,

SSHo 11 X2 (d).
K(I/J, F)

If a consistent estimator of K( I/J, F) is used, it is proposed to use •
the statistic

F =c
SSHo/d

K(I/J,F)
(4.4)

under Ho , and compare it with the F-distribution with d and (n-p)
degrees of freedom. Small sample properties of this statistic are ex
amined via Monte Carlo methods.

To illustrate the general procedure, consider a two-way design
model, •

Yijk = J.l. + CXj + Pj + 'Yij + €ijk'

i = I, ... , b; j = I, ... ,t; k = I, ... , r.

This can be equivalently expressed as

Yijk =J.l.ij + €ijk' J.l.ij =J.l. + (Xi +Pj + 'Yij'

M-estimates of J.l.ij' denoted by J.l.Mij' can be obtained by applying
Bickel's one-step procedure. Then an estimate of K( I/J, F) is com
puted as

1 r-b r-t r-t r-r .,,2 (Y"k - ~M .. ) (4 5)
b t (r - 1) i= 1 j= 1 j= 1 k =1 'II IJ IJ •

K(I/J, F) = .
[_1_ r-b r-t i ljJ(Yijk - Jlmijrp

btr i=1 j=1 k=1

The PM - model is thus, .

•

(4.6)



'. ROBUST TEST OF LINEAR HYPOTHESIS 53

where e* is asymptotically MVN (0, K(I/J, F) I bt ), since (x'xr 1
r

= (I/r) I bt •

Suppose it is desired to test the hypothesis of no interaction,
H o : /ljj - /ljk + /lpk - /lpj =0 for every pair (;, i) and (P, k), i =l=p,
i =1= k. The hypothesis H o : H P=h then appears as Ho : H /l =0, where
(Milliken, 1971)

• H = Bt® Bb

1 -1 0 0

1 I -2 0

B =t
(t-I)xt

• I I I -(t-1)

Bb =
(b-I)xb

I

1

-I 0
1 -2

o
o

•
I I I -(b-I)

•

The constrained model is

/lM = (I - Htl)/l + e*

=[Ibt - (I - _I Jt)®(Ib - _I Jb)Jp + e*,
t t

since lf1{= (Bt@Bb) - (Bt X Bb) = (It - +JT)@(Ib - t Jb) .
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So that

A A A, I I A

SSHo =~ B IlM =rllM [(1t- - Jt)x (Ib- -Jb)]IlM
. t b

Since
B =x'X - X'X (I - H7l) [(It - H1f) X'X (l - H1f)]- (I - H1l) XiX

=rI - rI (I - H1f) [(1 - H1f)- (I - H1f)

=r(I - 1+ H1l) =rHlI. •
The Fe - statistic can then be calculated from equation (4.4) with an
estimate of K(I/!, F) given by equation (4.5)

Another approach to testing linear hypothesis about (3 is by
reparanretrizing the~ - model to a design structure as

(3M=Ar+e* (4.7)

where e* is asymptotically MVN (0, K(I/!, F) (X'X)- '). A is a pxs
design matrix, and r is an sxl vector of unknown parameters. Sup- •
pose it is of interest to test the hypothesis Ho : H T =0, where H
is a dxs matrix of rank d ~ p and H T is a set of linearly estimable
functions. The model (4.7) is then constrained by the conditions of
H0 from which the sumAof squares for testing Ho is obtained.

For example, the (3M - model for the two-way design model
previously discussed (equation 4.6) can be reparametrized as follows:

IlMll

=A T + e*

= + e* =
•
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where

I I 0 0 I 0 0 I 0 0

I I 0 0 0 I 0 0 0 0

A =
•

I 0 0 I 0 0 0 0 0

=Ut@ib' it@fb, ft@ib' fbt) and

T =(J,L, a l a2' ... , ab, PI ' P2 , .•. Pt, 'Yll , 'YI2' ... , 'YB T)'

Suppose it is desired to test the hypothesis of no interaction,
Ho : 'Yll = 'YI2 =. . . ='Ybt = 0, the model constrained by Ho is

PM =C,/· +e* (4.8)

•

•

The sum of squares for testing Ho is the sum of squares residual of

The sum of squares for testing H; is the sum of squares residual of
the constrained model (4.8), i.e.,

S A t C-) A I [f I ) (I I J )] ASHo = rPM (f - C PM =rpM t - t J, @ b - b b PM'

SIMULATION STUDY FOR THE STATISTIC Fe

The distribution of the test statistic Fe was studied via Monte
Carlo methods. The simulation study was conducted by using the
one-way analysis of variance model,

Yij = Pi + eij'
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where i = 1, 2, ... , t population, j = 1, 2, ... , r observations per
population. The Yi/S were generated from the NOO, 1) with pro
bability (1 - p) and from the NO 0, 16) with probability p using the
normal random number generator Super Duper (Marsaglia et. a1.,
1976). For each population, Huber's p-function (given in equation
3.1) wasused with c =1.50, together with Bickel's one-step procedure,
to estimate the Jl;'s. Starting values of Jli' Jl!, were taken as the
median of the r observations from each population, that is,

Jl'!' = med{Y ..}I i IJ

and a corresponding robust estimate of 0 was computed as

•

•

=o

med
i

An estimate of K( 1jJ, F) was computed as follows:

1 s' 1;' .,,2 (y A)
""7t7""(r-_"'"T}"",[") i= I i'" I '#' ii - JlM i

K(IjJ, F) =----------
1 t, A

[- 1; 1; 1jJ' (y ..-- P.M·)]2rt i= I i= I IJ I

A A

The ~M - model is then JlM = Jl + €*, where €* is asymptotically
MVN (0, [K(IjJ, F)/rj It). Under the hypothesis of no population
mean difference, flo: JlI =Jl2 =... =Jlt =Jl, Jl unspecified, the statis
tic Fe reduces to

F = SST/(t - 1)
e K(IjJ, F)/r

where

•

•
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A

PMi =one-step M-estimate of Pi·

57

•

•

•

A simulation of size 500 was run for each test case. The frequency
distribution of Fe was compared to the distribution of the theoretical
F with (t-I) and f(r-I) degrees of freedom for each case. The
cases studied were:

Case t r p

1 3 5 .00

2 3 5 .10

3 3 5 .20

4 3 11 .00

5 3 11 .10

6 3 11 .20

7 5 9 .00

8 5 9 .10

9 5 9 .20

10 5 25 .00

11 5 25 .10

12 5 25 .20

The cases where p =.00 are the noncontaminated cases and were
included in the study to determine how the statistic Fe compares
with the theoretical F-distribution having (t - 1) and f(r - 1) degrees
of freedom under normal conditions. The results are shown graphical
ly in Figures 1a, 1b, and 1c.

The simulation results indicate that when the data are not conta
minated, the distribution of Fe reasonably fits the theoretical Edistri
bution even with moderate sample sizes, the exception being Case 1.
However, with 10% contamination, a very good fit is observed for
all cases studied. In cases where 20% of the data are contaminated,
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the fit of Fe is not quite so good as when 10%are contaminated, but
it may be observed that even with small samples sizes the distribution
of Fe is close to that of the theoretical F-distribution.

A simulation study of the power of the test was also run for all
twelve cases. The simulated power of Fe was compared to the
respective noncentral F-distribution.

The noncentrality parameter, A, was computed for the F-distribu-
~as •

r

where

0: =p(0')2 + (l _p)02;

(o'? =16, the variance of the contaminating normal
distribution;

0 2 = 1, the variance of the uncontaminated normal
distribution,; and

- t
Po =1: Po It

i= 1 i

A was then transformed to (1 =J2Alt. The results of the simulation
study are shown in Table I.

The power study shows that Fe is a good statistic for testing
linear hypotheses about the parameters in the (3M - model when the
data are contaminated. Its power is greater than than of the usual F • I

test under 10% and 20% contamination. Yet with no contamination.
the power of Fe is less than the usual F, but the loss in power is not
more than 30/0.

In conclusion, for the cases studied, the sampling distribution of
Fe is adequately described by. the F-distribution with (t - 1) and
t(r - 1) degrees of freedom when data are not contaminated. When
the data are contaminated, the distribution of Fe closely fits the
usual F-distribution and its power is greater than of the usual F.

•
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EXAMPLE
The following example was discussed by Box and Cox (1964).

The data are records of survival times of animals in a 3 x 4 factorial
experiment with 4 observations per cell. The model assumed is

• where i= 1,2, 3,j =1,2,3,4, k= 1,2,3,4. The model can be
equivalently written as

•

•

•

Least squares estimates of JJ"ij are given in Table II. The usual
analysis of variance, shown in Table III, indicated no evidence of a
poison x treatment (Pxt) interaction at the 5% level. This was the
conclusion reached by Box and Cox. Schrader's (1977) robust
analysis of the data indicated otherwise.

Bickel's one-step procedure was applied to each individual cell
with k = 1.5 and 0 estimated for each cell. Initial estimates of the,
Jlji s were taken to be the, median of the Y j i k 's in the (i, j)th cell.
Robust estimates of Jlji' JlMii' are shown in Table IV. After the

~Mj/S had been obtained, weighted least squares techniques were
applied to test for main effects and interactions The results are
given ill Table V. No error sum of squares is entered in the table, un
like the conventional analysis of variance table.

The procedure was repeated with k: = l.0 in order to compare
results with Schrader. The results are shown in Table VI and VII. In
his analysis, Schrader used Huber's p-function with k = 1.0 and an
estimate ofscale as the eightieth percentile point of the error distribu
tion. Comparison of sum of squares column from Table VII and the
dipersion column of Table 4.4 (Schrader, 1976) indicates a close
agreement in the numerical values. The main difference is in the
MSE and mean dispersion for error entry in the respective tables.
The statistic Fe failed to detect the presence of interaction effects
for both k = 1.0 and k = 1.5 at the 5% level - the same conclusion
reached by Box and Cox.
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TABLE I. POWER STUDY

Size of Power of the usual Power ofFe
Means the F-test

test p=.OO p=.10 p=20 p=.OO p=.10 p=.20

t=3 r=5 •
1/>=3.2 1/>=2.0 1/>=1.6

10,13,13 .01 .936 .492 .288 .918 ;772 .544
.05 .995 .783 .580 .990 .922 .698
.10 1.000 .882 .722 .998 .966 .880

t=3 r=l1

<P=2.7 1/>=4.4 1/>=1.4 •
10,11,12 .01 .916 .448 .276 .904 .770 .598

.05 .981 .706 .530 .978 .966 .818

.10 .993 .812 .662 .990 .958 .894

t=5 r=9

1/>=2.7 1/>=1.7 1/>=1.3

10, 10, 11 .01 .983 .609 .346 .980 .876 .696
12,12 .05 .998 .827 .603 .998 .964 .864

.10 1.000 .901 .726 1.000 .974 .936 •
t=5 r=25

1/>=1.9 1/>=1.2 1/>=0.9

10, 10.5, .01 .806 2.94 .147 .782 .580 .376
10.5,11,11 .05 .930 .580 .329 .920 .800 .654

.10 .964 .661 .450 .954 .872 .772

•
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TABLE II. LEAST SQUARES ESTIMATES OF #J.jj

Treatment
Poison A B C D

I 0.41 0.88 0.57 0.61

'. II 0.32 0.82 0.38 0.68
III 0.21 0.34 0.24 0.33

TABLE III. ANOYA FOR POISON X TREATMENT DATA

Source df SS MS F F.os

Poison 2 1.0330 0.5164 23.3 3.26
Treatment 3 0.9212 0.3071 13.8 2.86

• PxT 6 0.2501 0.0417 1.9 2.35
Error 36 0.8807 0.2220

Table IV. ONE-STEPM-ESTIMATES OF #J.jj (k = 1.5)

Treatment
Poison A B C D

I 0.44 0.87 0.57 0.63
II 0.32 0.82 0.38 0.67
III 0.21 0.34 0.24 0.33•

TABLE'V. ROBUST ANOYA FOR POISON x TREATMENT DATA
(k = 1.5)

Source df SS MS Fe

Poison 2 0.26629 0.13314 20.64
Treatment 3 0.21960 0.07320 11.35
PxT 6 0.05829 0.00972 1.51
Error 36 0.00645

•
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TABLE VI. ONE·STEP M·ESTIMATES OF J.l.;j (k = 1.0)

Treatment
Poison A B C D

I 0.44 0.85 0.55 0.64
II 0.32 0.78 0.38 0.64 •III 0.22 0.34 0.24 0.32

TABLE VII. ROBUST ANOVA FOR POISON x TREATMENT DATA
(k = 1.0)

Source df SS MS Fcc

Poison 2' 0.25379 0.12689 17.38 •Treatment 3 0.19685 0.06562 8.98
PxT 6 0.04519 0.00753 1.03
Error 36 0.00730

•

•
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160. CASE 1: T=S R=S CASE 2: T=3 R=S
NO CONTAMINATION WITH 10%CONTAMlNATION

140. 140.
LEGEND LEGEND

120. - THEORETICAL FREQ. DlST. 120. - THEORETICAL FREQ. DlST.

- FREQ. DIST. OF FC FREQ. DlST. OF FC
>- 100.u 100. >-• Z u
~ z;l

~ 80.C! 80. ;l
~ C!
~ ~

60. ~ 60.

40.
40.

20. 20.

0
- ..... - --.-

O.
0.0 2.0 4.0 6.0 8.0 10.0 12.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

F F

•
140. CASE 3: T=3 R=l1 140. CASE 4: T=3 R=l1

r.. WITH 20%CONTAMlNATION NO CONTAMINATION

120. LEGEND 120. LEGEND
- THEORETICAL FREQ. DlST. - THEORETICAL FREQ. DlST.

100. FREQ. DIST. OF FC 100. - FREQ. mST. OF FC

>- >-u 80.
~

80.Z
~ ~s ;l

60.60. C!
~ ~
~ ~

40. 40.'. 20. 20.

O. O.
0.0 2.0 4.0 6.0 8.0 10.0 12.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0

F F

Figure 1a Frequency distribution of F and Fe

•
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160.

140. 140.

CASE 5: T=3 R=ll 120.
CASE 6: T=3 R=ll

120. WITH 10%CONTAMINATlON WITH 20%CONTAMINATlON

100. LEGEND ;>< 100. LEGEND
- THEORETICAL FREQ. D1ST. ~ - THEORETICAL FREQ. D1ST.

;><
80.

- FREQ. D1ST.OF FC ~ 80. - FREQ. D1ST.OF FC •U ::JZ C/
~ I:l::J

60.C/ 60. ~

I:l
~

40. 40.

20. 20.

O. O.

0.0 2.0 4.0 6.0 8.0 10.0 12.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0
F F

•
140.

CASE 7: T=5 R=9
140.

CASE 8: T=5 R=9
NO CONTAMINATlON WITH 100CONTAMINATlON

120. LEGEND 120. LEGEND
- THEORETICAL FREQ. D1ST. - THEORETICAL FREQ. D1ST.

100. - FREQ. D1ST.OF FC 100. - FREQ. D1ST.OF Fe
;>< >-
U ~
~ 80.

~
80.

::J ::J
C/

60.
g 60.~

l>:: l>::
~ ~

40. 40.

20. 20.
~,,

O. O.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
F F

figure 1b Fl1'equency distribution of f and fe

•



• ROBUST TEST OF LINEAR HYPOmESIS 65

140.
CASE 9: 1'=5 R=9

140.
CASE 10: T=5 R=25

• WITH 2Q%CONTAMINATION NO CONTAMINATION
:\
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Figure 1c Frequency distribution of F and Fe
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